Traveling Wave Solutions for Complex Space-Time Fractional Kundu-Eckhaus Equation

نویسندگان

چکیده

In this work, the class of nonlinear complex fractional Kundu-Eckhaus equation is presented with a novel truncated M-fractional derivative. This model significant and notable in quantum mechanics good-natured physical characteristics. The motivation for paper to construct new solitary kink wave solutions governing using ansatz method. A complex-fractional transformation applied convert into an ordinary differential equations system. equilibria corresponding dynamical system will be show existence traveling model. are realized by means proposed order gain insight underlying dynamics obtained solutions, some graphical representations drawn. For more illustration, several numerical applications given analyzed graphically demonstrate ability reliability method dealing various engineering problems.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Kundu–Eckhaus equation and its discretizations

In this article we show that the complex Burgers and the Kundu– Eckhaus equations are related by a Miura transformation. We use this relation to discretize the Kundu–Eckhaus equation.

متن کامل

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Space-time fractional Zener wave equation.

The space-time fractional Zener wave equation, describing viscoelastic materials obeying the time-fractional Zener model and the space-fractional strain measure, is derived and analysed. This model includes waves with finite speed, as well as non-propagating disturbances. The existence and the uniqueness of the solution to the generalized Cauchy problem are proved. Special cases are investigate...

متن کامل

Rogue waves of the Kundu-Eckhaus equation in a chaotic wave field.

In this paper we study the properties of the chaotic wave fields generated in the frame of the Kundu-Eckhaus equation (KEE). Modulation instability results in a chaotic wave field which exhibits small-scale filaments with a free propagation constant, k. The average velocity of the filaments is approximately given by the average group velocity calculated from the dispersion relation for the plan...

متن کامل

A numerical scheme for space-time fractional advection-dispersion equation

In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2023

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math11020404